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LATERALLY BRACED COLD-FORMED STEEL FLEXURAL MEMBERS

WITH EDGE STIFFENED FLANGES

By B. W. Schafer1 and T. Peköz,2 Members, ASCE

ABSTRACT: The moment capacity of a laterally braced cold-formed steel flexural member with edge stiffened
flanges (e.g., a channel or zee section) may be affected adversely by local or distortional buckling. New pro-
cedures for hand prediction of the buckling stress in the local and distortional mode are presented and verified.
Numerical investigations are employed to highlight postbuckling behavior unique to the distortional mode.
Compared with the local mode, the distortional mode is shown to have (1) heightened imperfection sensitivity,
(2) lower postbuckling capacity, and (3) the ability to control the failure mechanism even in cases when the
elastic buckling stress in the local mode is lower than in the distortional mode. Traditional design methods do
not explicitly recognize distortional buckling, nor do they account for the observed phenomena in this mode. A
new design method that integrates distortional buckling into the unified effective width approach, currently used
in most cold-formed steel design specifications, is presented. For each element a local buckling stress and a
reduced distortional buckling stress are compared to determine the effective width. Comparison with experi-
mental tests shows that the new approach is more consistent and reliable than existing design methods.
INTRODUCTION

Finite strip analysis of a flexural member with an edge stiff-
ened flange (Fig. 1) reveals three fundamental buckling modes:
local, distortional, and lateral-torsional. For a laterally braced
flexural member the lateral-torsional buckling mode is re-
stricted. Therefore, the two primary modes of concern are local
and distortional buckling.

The American Iron and Steel Institute (AISI) Specification
for the design of cold-formed steel structural members (AISI
1996), hereon referred to as the AISI specification, attempts to
account for distortional buckling through an empirical reduc-
tion of the local plate buckling coefficient k. The empirical k
values do not agree with the actual distortional buckling stress.
The experimental work (Desmond et al. 1981) that was
conducted to determine the empirical k expressions actually
concentrated efforts on local buckling of the flange. This
was accomplished by testing back-to-back sections. This ex-
perimental setup strongly restricts buckling in the web and
hence distortional buckling as well. More recent experiments
on laterally braced flexural members with edge stiffened
flanges by Willis and Wallace (1990), Schuster (1992), Mor-
eyra (1993), and Ellifritt et al. (1997) demonstrate unconser-
vative strength predictions using the AISI specification.

A hand method for the prediction of the distortional buck-
ling stress in compression members was derived by Lau and
Hancock (1987). Hancock extended this approach to flexural
members in Hancock (1995, 1997). In Hancock et al. (1996)
a method for evaluating the strength in distortional buckling
is proposed. Hancock et al.’s method provides an independent
strength calculation for distortional buckling. The suggested
design strength is the minimum of the AISI specification
method and a distortional buckling method. Comparison of
this approach with test data is favorable, though the method
proves overly conservative in many cases.

A unified treatment of local and distortional buckling in lat-
erally braced flexural members with edge stiffened flanges is
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FIG. 1. Finite Strip Analysis of Flexural Member with Edge
Stiffened Flange: (a) Local Buckling; (b) Distortional Buckling;
(c) Lateral-Torsional Buckling

the objective here. The procedure begins with closed-form pre-
diction of the local and distortional buckling stresses. Inter-
action of the flange, web, and lip, in both local and distortional
buckling, is considered. A need for the integration of the dis-
tortional mode into the design procedure is highlighted by two
behavioral phenomena. First, the distortional mode has less
postbuckling capacity than the local mode. Second, the dis-
tortional mode has the ability to control failure even when it
occurs at a higher critical stress than the local mode. A design
method incorporating these phenomena is needed to provide
an integrated approach to strength prediction involving local
and distortional buckling.

ELASTIC BUCKLING

Elastic buckling of cold-formed steel members can be pre-
dicted readily by numerical methods. However, for design pur-
poses, closed-form solutions still are required. Therefore, new
hand methods are developed for prediction of the buckling
stress in the local and distortional modes.

LOCAL BUCKLING PREDICTION

An element model and a semiempirical interaction model
are presented for closed-form approximation of the buckling
stress in the local mode [see Fig. 1(a)]. The element model
ignores interaction of the flange, web, and/or lip and treats the
buckling of each element independently as is done in the cur-
rent AISI specification. For instance, for a compression flange,
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FIG. 2. Local Buckling of Isolated Flange and Lip

it is assumed that the element is simply supported on all four
sides and thus a plate buckling coefficient of k = 4 is em-
ployed. For the semiempirical interaction model, local buck-
ling of the flange is influenced by its attachment to a lip and
a web.

Expressions for the plate buckling coefficients for the ele-
ment model and the semiempirical interaction model follow.
All of the k values are written in terms of the critical buckling
stress of the flange, where

2p D
f = k (1)cr 2b t

Several of the elements are subjected to a stress gradient,
which is defined in terms of j

f 2 f1 2
j = (2)

f1

where f1 and f2 = stresses at the opposite edges of the element.
For the web, f1 is at the web/compression flange juncture. For
the lip, f1 is at the lip/compression flange juncture. Compres-
sion stresses are positive (tension stresses negative).

Element model

flange: ( f ) k = 4 (3)cr f

3 2 2web: ( f ) k = (0.5j 1 4j 1 4)(b/h) (4)cr w web web

2lip: ( f ) k = k (b/d ) (5)cr l lip

2for 0 < j # 1.1 k = 1.4j 2 0.25j 1 0.425 (6)lip lip lip lip

3 2for 1.1 < j # 2 k = 13j 2 65.5j 1 131j 2 80 (7)lip lip lip lip lip

Semiempirical interaction model

2flange/lip: ( f ) k = (8.55j 2 11.07)(d/b)cr fl lip

1 (21.59j 1 3.95)(d/b) 1 4lip

for j # 1 and d/b # 0.6 (8)lip

3 2 2flange/web: ( f ) k = 1.125 min{4, (0.5j 1 4j 1 4)(b/h) } (9)cr fw web web

With the exception of the k = 4 solution, all of the foregoing
expressions are new. The equations are determined by fitting
expressions to finite strip analysis results. Fig. 2 shows the
comparison for the local buckling expressions of an isolated
flange and lip. The element model provides a lower bound,
whereas the semiempirical interaction model closely approxi-
mates the finite strip analysis, within the prescribed param-
eters.
FIG. 3. Finite Strip Analysis of Isolated Flange and Lip

DISTORTIONAL BUCKLING PREDICTION

Prediction of distortional buckling, as shown in Fig. 1(b),
is complicated because of the sensitivity to the solution to the
rotational restraint at the web/compression flange juncture.
Consider an isolated flange and lip (similar to the inset of Fig.
2) in which the web/flange juncture is idealized as either a
simple support or a fixed support. Finite strip analysis (Fig. 3)
shows that for local buckling the change in the plate buckling
coefficient is small regardless of the boundary condition. How-
ever, for distortional buckling the potential differences are sig-
nificant.

Closed-form prediction of the distortional buckling stress is
based on an examination of the rotational restraint at the web/
flange juncture. The rotational stiffness may be expressed as
the summation of the elastic and stress-dependent geometric
stiffness terms with contributions from both the flange and the
web

k = (k 1 k ) 2 (k 1 k ) (10)f w e f w gf f f f f

Buckling ensues when the elastic stiffness at the web/flange
juncture is eroded by the geometric stiffness, i.e.

k = 0 (11)f

Using (11) and writing the stress-dependent portion of the ge-
ometric stiffness explicitly

˜ ˜k = k 1 k 2 f (k 1 k ) = 0 (12)f fe fwe f fg fwgf

Therefore, the critical buckling stress ( f ) is

k 1 kf fe fwe
f = (13)˜ ˜k 1 kf fg fwg

Analytical models are needed for determining the rotational
stiffness contributions from the flange and the web. For the
flange, cross-sectional distortion is not important [Fig. 1(b)];
hence the flange is modeled as a column undergoing torsional-
flexural buckling. This is similar to the approach of Sharp
(1966), Lau (1988), Seah and Rhodes (1993), Davies and Jiang
(1996), and Hancock (1997). For the web, cross-sectional dis-
tortion must be considered, so the web is modeled as a single
finite strip. Therefore, the transverse shape function is a cubic
polynomial. The longitudinal shape functions of the flange and
web are matched by using a single half-sine wave for each.

Distortional Buckling—Model for the Flange

Consider the torsional-flexural buckling of a column with
springs along one edge as shown in Fig. 4. The governing
differential equations are



4 4 2 2d u d v d u d f
EI 1 EI 1 P 1 yyf xyf 0S D4 4 2 2dz dz dz dz

1 k (u 1 (y 2 h )f) = 0xf 0 y (14)

4 4 2 2d v d u d v d f
EI 1 EI 1 P 2 x 1 k (v 2 (x 2 h )f) = 0xf xyf 0 yf 0 xS D4 4 2 2dz dz dz dz

(15)

4 2 2 2d f I d f d v d uof
EC 2 GJ 2 P 2 P x 2 ywf f 0 0S D S D4 2 2 2dz A dz dz dzf

1 k (u 1 (y 2 h )f)(y 2 h ) 2 k (v 2 (x 2 h )f)(x 2 h )xf 0 y 0 y yf 0 x 0 x

1 k f = 0f f (16)

where Ixf, Iyf, Ixyf, Iof, Cwf, Jf, and Af = section properties of the
flange; kxf, kyf, and kff = springs; x0 and y0 = distances from
the centroid to the shear center; and hx and hy = distances from
the centroid to the springs. The following shape functions,
consistent with a simply supported column, are used:

pz pz
f = A sin , u = A sin (17a,b)1 2S D S DL L

pz
v = (x 2 h )A sin (17c)0 x 1 S DL

For this application the kxf spring stiffness is assumed zero and
the kyf spring stiffness is assumed infinite. The typical approach
is to find the buckling load Pcr. However, the goal here is to
write the solution in terms of the rotational restraint the flange
provides at the web/flange juncture. The shape functions in
(17) are substituted into (14)–(16) and the load P is written
in terms of the uniform stress f1. If terms of order f 2 are ne-
glected then the flange rotational restraint may be written in
the linear form given in (12). The resulting rotational stiffness
terms are

4 2p I xyf2 2k = EI (x 2 h ) 1 EC 2 E (x 2 h )f fe xf 0 x wf 0 xS D S DL Iyf

2
p

1 GJfS DL (18)

2 2
p I Ixyf xyf2k̃ = A (x 2 h ) 2 2y (x 2 h )f fg f 0 x 0 0 xS D F S S D S DL I Iyf yf

2 21 h 1 y 1 I 1 Ix 0 xf yfD G
(19)

For a simple lip stiffened flange (Fig. 4) the section prop-
erties in (18) and (19) are only a function of b, d, u, and t

A = (b 1 d )t (20)f

3 3J = 1/3bt 1 1/3dt (21)f

2 2 3 3 2 2 4 4 2t(t b 1 4bd 2 4bd cos (u) 1 t bd 1 d 2 d cos (u))
I =xf 12(b 1 d )

(22)

4 3 2 2 3 2 4 2t(b 1 4db 1 6d b cos(u) 1 4d b cos (u) 1 d cos (u))
I =yf 12(b 1 d )

(23)

2tbd sin(u)(b 1 d cos(u))
I = (24)xyf 4(b 1 d )

3 3 3tb bt td
I = 1 1 (25)of 3 12 3
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FIG. 4. Flange Model

2 2b 2 d cos(u)
x = (26)0 2(b 1 d )

22d sin(u)
h = y = (27)y 0 2(b 1 d )

2 22(b 1 2db 1 d cos(u))
h = (28)x 2(b 1 d )

x 2 h = b (29)0 x

C = 0 (30)wf

Distortional Buckling—Model for the Web

Derivation of the rotational restraint provided by the web to
the web/flange juncture is based on using a single finite strip
as shown in Fig. 5. The finite strip solution for the plate bend-
ing terms may be represented symbolically as

F k k k k1 11 12 13 14

M k k k k1 21 22 23 24=HF J FFk k k k G2 31 32 33 34

M k k k k2 41 42 43 44 E

k k k k w11 12 13 14 1

k k k k u21 22 23 24 12 FFk k k k GG G Hw J31 32 33 34 2

k k k k u41 42 43 44 2G
(31)

where F and M = consistent nodal loads or moments; and kij

= stiffness coefficients for the plate bending finite strip matrix
[e.g., Cheung (1976)]. For simply supported edges, the terms
of interest are

M k k k k u1 22 24 22 24 1= 2 (32)H J FF G F G G H JM k k k k u2 42 44 42 44 2E G

To find kfw, consider the strip to be unloaded along edge
two and loaded along edge one (the web/compression flange
juncture) with a sinusoidal edge moment of M sin(py/L). The
consistent nodal moments M2 = 0 and M1 = 1/2ML are sub-
stituted. The solution then is written in terms of u1. If u1 = 1,
then M = kfw; therefore

2 (k 2 k )(k 2 k )24e 24g 42e 42g
k = (k 2 k ) 2 (33)w 22e 22gf S DL (k 2 k )44e 44g

The web rotational stiffness kfw is decomposed into elastic and
geometric parts

k = k 2 k (34)w fwe fwgf

22 k24e
k = k 2 (35)fwe 22eS DL k22e

2 (k 2 k )(k 2 k )24e 24g 42e 42g
2k = (k 2 k ) 2fwg 22e 22gSF GL (k 2 k )44e 44g

2k24e
2 k 222eS DDk22e (36)

The kij terms may be substituted directly to yield the com-



FIG. 5. Finite Strip Idealization of Web
plete analytical expressions for kf. Although exact, the ex-
pressions have an inordinate number of terms. Simplifications
are made to provide a more compact solution. The elastic ro-
tational stiffness in (35) is truncated by converting to partial
fractions on the length L and keeping the constant term, the
1/L2 term, and the 1/L4 term. The resulting expression asymp-
totes to the full expression and provides a reasonable approx-
imation of the elastic rotational stiffness

2 4 33 p 19h p h
k = D 1 1 (37)fwe S S D S D Dh L 60 L 240

For the geometric rotational stiffness in (36) the first ap-
proximation made is to linearize the stress f1. This is adequate
for stress gradients near pure bending (jweb ; 2), but breaks
down as the stress approaches pure compression (jweb = 0).
With this simplification, the geometric rotational stiffness takes
the form

2 22 f 2k k k 2 k k 2 k k1 22e 24e 24g 22g 24e 22g 22e
2k = (38)fwg S D2L k22e

Further simplification is provided after substituting in the kij

terms by converting the solution to partial fractions on the
length L. The general expression is then expressed in three
terms, in which the dominators are

— — —
1 1 (39)2 4 2 2 4 4 2 2 4 2L (h 1 L h 1 L ) (h 1 L h 1 L )

Parametric analysis shows the final term to be insignificant;
thus it is neglected. The first two terms are combined to form
the approximation of the rotational geometric stiffness, where

˜k = k 2 f k (40)w fwe 1 fwgf

2htp 2 2k̃ = {[(45360(1 2 j ) 1 62160)(L/h) 1 448pfwg web13440

2 4 4 2 21 (h/L) (53 1 3(1 2 j ))p ]/[p 1 28p (L/h)web

41 420(L/h) ]} (41)

Distortional Buckling—Critical Length

The buckling stress is a function of length L; hence to ap-
proximate the L at which f is a minimum, the rotational stiff-
ness terms are written explicitly in terms of L

4 2k = (1/L) C 1 (1/L) C (42)ffe 1 2

2k̃ = (1/L) C (43)ffg 3

2 4k = K 1 (1/L) K 1 (1/L) K (44)fwe 1 2 3

k̃ = K ( f (L)) (45)fwg 4

This gives the solution for the distortional buckling stress f
as

4 2 2 4(1/L) C 1 (1/L) C 1 K 1 (1/L) K 1 (1/L) K1 2 1 2 3
f = (46)2(1/L) C 1 K ( f (L))3 4

The critical length is found by minimizing f with respect to
TABLE 2. Performance of Elastic Buckling Methods

Statistics
(1)

LOCAL BUCKLING

Element
Model

Mpredicted/Mlocal

(2)

Interaction
Model

Mpredicted/Mlocal

(3)

DISTORTIONAL
BUCKLING

Proposed
method

Mpredicted/Mdist

(4)

Average 0.74 0.90 0.95
Standard deviation 0.12 0.05 0.08

TABLE 1. Geometry of Members

h
(1)

b
(2)

d
(3)

u
(4)

50 25 6.25, 12.5 45, 90
100 25 6.25, 12.5 45, 90

50 6.25, 12.5, 25 45, 90
150 25 6.25, 12.5 45, 90

50 6.25, 12.5, 25 45, 90
75 6.25, 12.5, 25, 37.5 45, 90

200 25 6.25, 12.5 45, 90
50 6.25, 12.5, 25 45, 90
75 6.25, 12.5, 25, 37.5 45, 90

100 6.25, 12.5, 25, 37.5, 50 45, 90

L. This minimization is complicated by the K4 term—the web
geometric stiffness. If the f(L) in the K4 term is approximated
as 1/L2 then the C3 and K4 terms drop out. This assumption is
made; therefore, the general solution for Lcr is

1/4
df C 1 K1 3= 0 → L = (47)cr S DdL K1

The appropriate terms for C1, K3, and K1 are substituted, re-
sulting in

4 2 24p h(1 2 n ) I xyf2 2L = I (x 2 h ) 1 C 2 (x 2 h )cr xf 0 x wf 0 xS S D3t Iyf

1/44 4p h
1 D720 (48)

If the flange is assumed to be pinned [as is done in the
critical length derivation of Lau (1988)] then the (Ixyf)

2/Iyf term
is assumed negligible.

Elastic Distortional Buckling—Summarized

To find the critical buckling stress in the distortional mode
( fcr)dist, use (13). The rotational stiffness terms in (13) are
found in (18), (19), (37), and (41). The rotational stiffness
terms should be evaluated at Lcr via (48) unless Lb < Lcr.

COMPARISON OF ELASTIC BUCKLING METHODS

Thirty-two members are examined via finite strip analysis
to compare with the proposed hand methods. The critical local
buckling moment (Mlocal) and critical distortional buckling mo-
ment (Mdist) are recovered from the finite strip analysis. The
geometry of the studied members is summarized in Table 1
and the comparison of the predictions is shown in Table 2.
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TABLE 3. Geometry of Edge Stiffened Flanges

b/t
(1)

d/t
(2)

u
(3)

Pcr,local

Pcr,dist

(4)

25 4.00–19.0 90 1.82–0.25
6.25–12.5 45 19.4–0.96

50 5.00–25.0 90 1.58–0.27
6.25–25.0 45 1.76–0.51

75 6.25–37.5 90 1.34–0.18
6.25–37.5 45 1.73–0.35

100 6.25–50.0 90 1.40–0.14
6.25–50.0 45 1.75–0.23

The models proposed for the local buckling stress in (3)–
(9) do not directly provide a direct prediction of the critical
buckling moment. For the element model the governing local
buckling stress is assumed to be the minimum of the flange,
web, or lip. For the interaction model the governing local
buckling stress is assumed to be the minimum of the flange/
lip and flange/web calculation. The governing local buckling
stress then is used to determine the local buckling moment.

For local buckling prediction the interaction model performs
markedly better than the element model. The overly conser-
vative nature of the element model is driven largely by poor
predictions when the lip controls the local buckling stress. In
cases when the lip controls, the average Mpredicted/Mlocal ratio is
0.6. The proposed distortional buckling method compares fa-
vorably with the finite strip analysis. Predictions for the u =
457 members are slightly less conservative than for the u =
907 members. Fortunately, the ratio for the u = 457 degree
members is still 0.98 and the standard deviation is lower than
for the u = 907 members.

POSTBUCKLING BEHAVIOR OF EDGE
STIFFENED ELEMENTS

To investigate the postbuckling behavior in the local and
distortional modes, nonlinear finite-element analysis of iso-
lated flanges is completed using ABAQUS (Hibbitt, Karlsson
& Sorensen, Inc. 1995). The flange is modeled as fixed at the
web/flange juncture and nine node shell elements (S9R5) are
employed. The material model is elastic-plastic with strain
hardening. Initial imperfections in the local and distortional
mode are superposed to form the initial imperfect geometry.
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A longitudinal through thickness flexural residual stress of
30% fy also is modeled.

The geometry of the members investigated is summarized
in Table 3. The thickness is 1 mm and fy = 345 MPa. Based
on the displaced shape and location of plasticity two basic
failure mechanisms from the finite element analysis are iden-
tified. It is observed that the final failure mechanism is con-
sistent with the distortional mode even in cases when the dis-
tortional buckling stress is higher than the local buckling
stress. Consider Fig. 6, which shows the final failure mecha-
nism for all the members studied. Based solely on elastic buck-
ling, one would expect the local buckling mode to control in
all cases in which ( fcr)local/( fcr)dist < 1; as the figure shows, this
is not the case.

Finite element analysis also reveals that the postbuckling
capacity in the distortional mode is less than that in the local
mode. Consider Fig. 7, for the same slenderness values the
distortional failures exhibit a lower ultimate strength. Similar
loss in strength is observed experimentally and summarized in
Hancock et al. (1994).

The geometric imperfections are modeled as a superposition
of the local and distortional buckling modes. The magnitude
of the imperfection is selected based on the statistical summary
provided in Schafer and Peköz (1998). The error bars in Fig.
7 demonstrate the range of strengths predicted for imperfec-
tions varying over the central 50% portion of expected im-
perfection magnitudes. The greater the error bars, the greater
the imperfection sensitivity.

The percent difference in the strength over the central 50%
portion of expected imperfection magnitudes is used as a mea-
sure of imperfection sensitivity

( f ) 2 ( f )u 25%imp u 75%imp 3 100% (49)
1

(( f ) 1 ( f ) )u 25%imp u 75%imp2

A contour plot of this imperfection sensitivity statistic (49)
is shown in Fig. 8. Stocky members prone to failure in the
distortional mode have the greatest sensitivity. In general, dis-
tortional failures are more sensitive to initial imperfections
than local failures. Areas of imperfection sensitivity risk are
assigned.

DESIGN OF FLEXURAL MEMBERS

The current AISI specification approach for the capacity of
a laterally braced flexural member involves determining an
FIG. 6. Failure Mode of Edge Stiffened Flanges



FIG. 7. Postbuckling Capacity of Edge Stiffened Flanges

FIG. 8. Imperfection Sensitivity of Edge Stiffened Flanges
FIG. 9. Typical (a) Gross and (b) Effective Sections

effective section modulus to account for local buckling. As
shown in Fig. 9, each element is reduced from its gross width
(e.g., b) to an effective width (e.g., be). The reduction is based
on an empirical correction to the work of von Kármán et al.
(1932) completed by Winter (1947). The extension of this ap-
proach to all members of the cross section is based on the
unified effective width approach of Peköz (1987). Once the
effective width is calculated, determination of the flexural
strength becomes a relatively straightforward manner, as
shown in Table 4.

Design—Effective Width of Elements

The effective width of the flange (or lip, replace b with d )
is

b = rb (50)e

where r is defined as

r = (1 2 0.22/l)/l for l > 0.673 otherwise r = 1 (51)

The slenderness parameter l is

l = f /( f ) (52)Ï y cr flange

Portioning of the effective width for the flange is simple
(Fig. 9). However, in the case of a stiffened element under a
JOURNAL OF STRUCTURAL ENGINEERING / FEBRUARY 1999 / 123



TABLE 4. Example for Effective Section Calculation

Element
(1)

A
(2)

y
(3)

Ay
(4)

Ay 2

(5)
Iown

(6)

Compression
flange bet — — — —

Web 1 h1t h1/2 (h1)
2t/2 (h1)

3t/4 t(h1)
3t/12

Web 2 h2t h 2 (ht 1 h2/2) — — —
Web 3 htt h 2 (ht/2) — — —
Tensor flange bt h — — —
Compression lip det de/2 — — —
Tensor lip dt h 2 d/2 — — —

AO AyO 2AyO IownO
AyOIeff 2 2M = S f S = y = I = Ay 1 I 2 A yn eff 1 eff eff eff own effO O SO Dyeff AO

stress gradient (i.e., the web), the portioning of h to h1, h2, and
ht is not straightforward. The expressions currently used in the
AISI specification for a stiffened element under a stress gra-
dient are discontinuous (Cohen 1987) and unconservative (Fig.
10). Other specifications, such as the Canadian standard for
cold-formed steel structural members (Canadian Standards As-
sociation 1994), yield results more consistent with numerical
analysis.

A new approach is proposed for the effective width of stiff-
ened elements under a stress gradient (i.e., webs). Consider
the effective width of an element in pure compression as
shown in Fig. 11. Determination of the effective width is based
on (1) an approximation of the nonlinear postbuckling stress
via r and (2) a force balance between the approximated non-
linear stress and the effective section. For an element under a
stress gradient (Fig. 11) the natural extension to this method-
ology is to determine the effective width by insuring that both
a force and a moment balance are maintained between the
approximated nonlinear stress and the effective section. The
solution of this force and moment balance result in the follow-
ing expressions:

h = hv/j for j > 0 (53)1 web web

2h = (h/j ) v 2 2v 1 r for j > 0 (54)Ï2 web web

l = f /( f ) (55)Ï y cr web

r = (1 2 0.22/l)/l, for l > 0.673, else r = 1 (56)
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FIG. 10. Simply Supported Plate in Pure Bending

0 # r < 0.77 v = 0.30r (57a)

0.77 # r < 0.95 v = 0.23 (57b)

0.95 # r # 1.00 v = 24.6r 1 4.6 (57c)

The resulting expressions agree with numerical analysis
(Fig. 10). Further, the effective width of the web is a function
of r. Thus, for the first time, the effective width of an element
under a stress gradient is a function of the degree of non-
linearity in the postbuckling stress distribution, as reflected
through r.

Design—Integrating Distortional Buckling
into Procedure

If distortional buckling is considered then the critical buck-
ling stress of an element (flange, web, or lip) is no longer
solely dependent on local buckling. To properly integrate dis-
tortional buckling, reduce postbuckling capacity in the distor-
tional mode and the ability of the distortional mode to control
the failure mechanism even when at a higher buckling stress
than the local mode must be incorporated. Consider defining
the critical buckling stress of the element used in (52) or (55)
as

( f ) = min[( f ) , R ( f ) ] (58)cr cr local d cr dist
FIG. 11. Effective Width Determination



TABLE 5. Elastic Buckling Stress Determination

Model 1 ; M1

(no local buckling interaction)
Model 2 ; M2

(local interaction included)

( fcr)web = min[( fcr)w, Rd( fcr)d] ( fcr)web = min[( fcr)fw, Rd( fcr)d]
( fcr)flange = min[( fcr)f, Rd( fcr)d] ( fcr)flange = min[( fcr)fw, ( fcr)f l, Rd( fcr)d]
( fcr)lip = min[( fcr)l, Rd( fcr)d] ( fcr)lip = min[( fcr)f l, Rd( fcr)d]

For strength, if the reduced distortional mode governs, then
(51) or (56) become

r = R (1 2 0.22 R /l)/l (59)Ï Ïd d

For Rd < 1, this method provides an additional reduction on
the postbuckling capacity. Further, the method also allows the
distortional mode to control in situations when the distortional
buckling stress is greater than the local buckling stress. Thus,
Rd provides a framework for solving the problem of predicting
the failure mode and reducing the postbuckling capacity in the
distortional mode. The selected form for Rd based on Figs. 6
and 7 and the experimental results of Hancock et al. (1994) is
1.17
R = min 1, 1 0.3 where l = f /( f ) (60)Ïd d y cr distS Dl 1 1d

Two models are advanced for predicting the critical buck-
ling stress of the elements. The models are summarized in
Table 5. With fcr of the element known, the effective width of
each element may be determined readily. The procedure out-
lined in Table 4 is completed to calculate the section capacity.

Comparison with Experimental Data

Experimental tests on laterally braced flexural members
with edge stiffened flanges from Winter (1947), Desmond et
al. (1981), LaBoube and Yu (1978), Schardt and Schrade
(1982), Elhouar and Murray (1985), Cohen (1987), Willis and
Wallace (1990), Ellifritt et al. (1992, 1997), Schuster (1992),
Moreyra (1993), Shan et al. (1994), and Rogers and Schuster
(1995) are gathered and examined. Based on the information
available from the tests, the type of sections tested, and the
loading arrangement, the applicability for use in this compar-
ison is assessed. The experimental data of Winter (1947), Des-
mond (1978), Elhouar and Murray (1985), and Ellifritt et al.
TABLE 6. Summary of Test to Predicted Ratios
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FIG. 12. Performance of AISI Specification versus h/b

(1992) are deemed to have poor applicability. Desmond’s and
Winter’s tests use back-to-back webs, which provide an un-
realistic rotational restraint. Ellifritt et al.’s (1992) tests pri-
marily fail in the lateral-torsional mode. Elhouar and Murray’s
(1985) summary of proprietary tests does not provide enough
detailed information on loading and bracing.

The majority of the remaining tests are on face-to-face chan-
nels in two-point bending. The channels typically have signif-
icant bracing at the load application point as well as a regularly
spaced angle or bar attached across the two channels in both
the compression flange and the tension flange. The bracing is
to insure that lateral-torsional buckling does not occur and to
approximate the effect of sheeting. The small spacing of the
attached angles or bars (often 300 mm ;12 in. or 150 mm
;6 in.) partially restricts the distortional mode.

If the bracing length (Lb) is less than the predicted Lcr from
(41), then Lb is used in determining the distortional buckling
stress. In many tests Lb < Lcr. Therefore capacity lower than
the experimentally observed strength is possible even for a
laterally braced member, because of the fact that the distor-
tional mode is partially restricted.

The flexural capacity of the remaining test data is assessed
via the AISI specification (MAISI) and the two proposed meth-
ods M1 and M2 (Table 5). The statistical results are summarized
in Table 6. One striking feature that Table 6 does not bring
out is the systematic error that exists in the current AISI spec-
ification method for large h/b values (Fig. 12).

From Table 6, the overall performance of the AISI specifi-
cation method appears adequate. A more detailed analysis re-
veals several inadequacies. For one, several of the individual
tests groups yield consistently unconservative predictions (n <
1). Second, the systematic error for large h/b is problematic.
Third, the AISI method is not a function of bracing length.
Therefore, the same members at longer unbraced lengths (but
members still not failing in lateral-tortional buckling) have the
same strength prediction via the AISI specification. This is
inadequate—until Lb exceeds Lcr, the distortional buckling
stress and the strength will decrease.

An integrated design method that employs local and distor-
tional buckling calculations is possible and reliable. The sys-
tematic error for large h/b values observed in the AISI speci-
fication is alleviated in either of the proposed methods (M1 or
M2). The test to predicted ratio is slightly on the conservative
side (>1) for the overall results of the proposed models. The
standard deviation and number of unconservative predictions
are both lower than the AISI specification for the overall results.

Often, including the local buckling interaction (M2) actually
yields a more conservative prediction than that determined by
ignoring it and using an element approach (M1). However, in-
dividual cases are observed where including the local buckling
interaction yields markedly better results. Local buckling initi-
ated by long edge stiffeners and local buckling with highly
slender webs and compact flanges are examples where includ-
ing the interaction is observed to improve the strength predic-
tion markedly.
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CONCLUSIONS

Laterally braced cold-formed steel flexural members with
edge stiffened flanges have two important buckling phenom-
ena: local and distortional. Current AISI specification methods
do not explicitly treat the distortional mode. Distortional buck-
ling deserves special attention because it has the ability to con-
trol the final failure mechanism in many cases and is observed
to have a lower postbuckling capacity than local buckling. New
hand methods are developed to predict the critical buckling
stress in both the local and the distortional mode. A design
method for strength prediction, based on the unified effective
width approach, is developed. The design method uses the new
expressions for prediction of the local and distortional buckling
stress and also introduces a new approach for determining the
effective width of the web. The resulting design method is
compared with a large body of experimental results and is
shown to provide more consistent and conservative prediction
than the existing AISI specification. Proper incorporation of the
distortional buckling phenomena is imperative for accurate
strength prediction of cold-formed steel members.
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Peköz, T. (1987). ‘‘Development of a unified approach to the design of
cold-formed steel members.’’ AISI Res. Rep. No. CF 87-1, American
Iron and Steel Institute, Washington, D.C.

Rogers, C. A., and Schuster, R. M. (1995). ‘‘Interaction buckling of
flange, edge stiffener and web of C-sections in bending.’’ Res. Into
Cold Formed Steel, Final Rep. of CSSBI/IRAP Proj., Department of
Civil Engineering, University of Waterloo, Waterloo, Canada.
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APPENDIX II. NOTATION

The following symbols are used in this paper:

b = flange width;
be = effective flange width;
D = plate rigidity;
f = stress;

f1 = edge stress on an element;
f2 = edge stress on an element;
fcr = minimum buckling stress;
fu = ultimate failure stress for a member;
fy = material yield stress;
h = web height;
ht = portion of web in tension;
h1 = portion of effective width of a web;
h2 = portion of effective width of a web;
k = plate buckling coefficient;

kf = rotational stiffness at web flange juncture;
kffe = elastic rotational stiffness of flange;
kffg = geometric rotational stiffness of flange;
kfwe = elastic rotational stiffness of web;
kfwg = geometric rotational stiffness of web;

kxf = flange model spring stiffness in x-direction;
kyf = flange model spring stiffness in y-direction;
kfg = k /f;fg

L = length;
Lb = unbraced length;
Lcr = length at which f is a minimum;
M = moment;
M = consistent nodal moment;

M1 = moment capacity by proposed method 1;
M2 = moment capacity by proposed method 2;

MAISI = moment capacity by AISI specification;
Rd = reduction factor for distortional buckling stress;

t = thickness;
u = flange model displacement in x;
v = flange model displacement in y;
u = orientation angle of the edge stiffener (lip);
l = slenderness;
j = stress gradient;
r = postbuckling reduction factor; and
f = flange model twist.
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